
Random Number Generation Using Normal Numbers

Random Number Generation Using Normal
Numbers

Michael Mascagni1 and F. Steve Brailsford2

Department of Computer Science1,2

Department of Mathematics1

Department of Scientific Computing1

Graduate Program in Molecular Biophysics1

Florida State University, Tallahassee, FL 32306 USA
AND

Applied and Computational Mathematics Division, Information Technology Laboratory1

National Institute of Standards and Technology, Gaithersburg, MD 20899-8910 USA
E-mail: mascagni@fsu.edu or mascagni@math.ethz.ch

or mascagni@nist.gov
URL: http://www.cs.fsu.edu/∼mascagni

In collaboration with Dr. David H. Bailey, Lawrence Berkeley Laboratory and UC Davis

http://www.cs.fsu.edu/~mascagni

Random Number Generation Using Normal Numbers

Outline of the Talk

Introduction
Normal Numbers
Examples of Normal Numbers
Properties

Relationship with standard pseudorandom number generators
Normal Numbers and Random Number Recursions
Normal from recursive sequence

Source Code
Seed Generation
Calculation Code Initial
Calculation Code Iteration

Implementation and Results

Conclusions and Future Work

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: Types of Numbers

I Rational numbers - p
q where p and q are integers

I Irrational numbers - not rational
I b-dense numbers - α is b-dense ⇐⇒ in its base-b expansion

every possible finite string of consecutive digits appears
I If α is b-dense then α is also irrational; it cannot have a

repeating/terminating base-b digit expansion
I Normal number - α is b-normal ⇐⇒ in its base-b expansion

every string of k base-b digits appears with a limiting frequency
1/bk

I A real number, α, having a different base-b expansion for each
integer b > 2, may be normal in one base but not in another

I A normal number in base r is normal in base s if log r/ log s is a
rational number

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: More Facts

I Every b-normal sequence is b-dense
I A number that is b-normal for every b = 2,3,4, . . . is said to be

absolutely normal
I Almost all real numbers in [0, 1) are absolutely normal, and they

are dense in [0,1)
I The non-normal numbers in [0,1) are also uncountable

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: More Facts

I Every b-normal sequence is b-dense
I A number that is b-normal for every b = 2,3,4, . . . is said to be

absolutely normal
I Almost all real numbers in [0, 1) are absolutely normal, and they

are dense in [0,1)
I The non-normal numbers in [0,1) are also uncountable

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: More Facts

I Every b-normal sequence is b-dense
I A number that is b-normal for every b = 2,3,4, . . . is said to be

absolutely normal
I Almost all real numbers in [0, 1) are absolutely normal, and they

are dense in [0,1)
I The non-normal numbers in [0,1) are also uncountable

Random Number Generation Using Normal Numbers

Introduction

Normal Numbers

Normal Numbers: More Facts

I Every b-normal sequence is b-dense
I A number that is b-normal for every b = 2,3,4, . . . is said to be

absolutely normal
I Almost all real numbers in [0, 1) are absolutely normal, and they

are dense in [0,1)
I The non-normal numbers in [0,1) are also uncountable

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

Some examples of numbers that are provably normal
1. Champernowne numbers

I C2 = 0.(1)(10)(11)(100)(101)(110)(111)(1000) . . .
I C10 = 0.(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12) . . .
I Thus, Cb is b-normal by construction

2. Copeland-Erdös constants
I Concatenate the primes in base 10:

0.(2)(3)(5)(7)(11)(13)(17)(19)(23)(29)(31)(37)(41)(43) . . .
I Concatenate the primes in base b:

0.((p1)b)((p2)b)((p3)b)((p4)b)((p4)b)((p5)b) . . .

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

3. Stoneham numbers:

αb,c =
∑

n=ck>1

1
bnn

=
∞∑

k=1

1
bck ck

I αb,c is b-normal when c is an odd prime, and b and c are relatively
prime

4. Korobov numbers:

βb,c,d =
∑

n=c,cd ,cd2 ,cd3 ,...

1
nbn

I βb,c,d is b-normal when b, c, d > 1 and b and c are relatively prime

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

3. Stoneham numbers:

αb,c =
∑

n=ck>1

1
bnn

=
∞∑

k=1

1
bck ck

I αb,c is b-normal when c is an odd prime, and b and c are relatively
prime

4. Korobov numbers:

βb,c,d =
∑

n=c,cd ,cd2 ,cd3 ,...

1
nbn

I βb,c,d is b-normal when b, c, d > 1 and b and c are relatively prime

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

3. Stoneham numbers:

αb,c =
∑

n=ck>1

1
bnn

=
∞∑

k=1

1
bck ck

I αb,c is b-normal when c is an odd prime, and b and c are relatively
prime

4. Korobov numbers:

βb,c,d =
∑

n=c,cd ,cd2 ,cd3 ,...

1
nbn

I βb,c,d is b-normal when b, c, d > 1 and b and c are relatively prime

Random Number Generation Using Normal Numbers

Introduction

Examples of Normal Numbers

Special Normal Numbers

3. Stoneham numbers:

αb,c =
∑

n=ck>1

1
bnn

=
∞∑

k=1

1
bck ck

I αb,c is b-normal when c is an odd prime, and b and c are relatively
prime

4. Korobov numbers:

βb,c,d =
∑

n=c,cd ,cd2 ,cd3 ,...

1
nbn

I βb,c,d is b-normal when b, c, d > 1 and b and c are relatively prime

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution
I Let {xi} be an infinite sequence of numbers in [0,1); E ⊂ [0,1), a

subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is uniformly distributed modulo 1 (UDM1) if:

lim
N→∞

#([a,b);N)

N
= b − a, ∀a,b ∈ R, 0 ≤ a < b ≤ 1

I {xi} is UDM1 if ∀ Riemann integrable function f on [0,1):

lim
N→∞

1
N

N∑
i=1

f (xi) =

∫ 1

0
f (x)dx

I Bohl, Sierpinksi, Weyl theorem: If α is irrational, then ∀ Riemann
integrable function f on [0,1) we have:

lim
N→∞

1
N

N∑
i=1

f ({iα}) =
∫ 1

0
f (x)dx

I Thus xi = {iα} = iα− biαc is UDM1 when α is irrational

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution
I Let {xi} be an infinite sequence of numbers in [0,1); E ⊂ [0,1), a

subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is uniformly distributed modulo 1 (UDM1) if:

lim
N→∞

#([a,b);N)

N
= b − a, ∀a,b ∈ R, 0 ≤ a < b ≤ 1

I {xi} is UDM1 if ∀ Riemann integrable function f on [0,1):

lim
N→∞

1
N

N∑
i=1

f (xi) =

∫ 1

0
f (x)dx

I Bohl, Sierpinksi, Weyl theorem: If α is irrational, then ∀ Riemann
integrable function f on [0,1) we have:

lim
N→∞

1
N

N∑
i=1

f ({iα}) =
∫ 1

0
f (x)dx

I Thus xi = {iα} = iα− biαc is UDM1 when α is irrational

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution
I Let {xi} be an infinite sequence of numbers in [0,1); E ⊂ [0,1), a

subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is uniformly distributed modulo 1 (UDM1) if:

lim
N→∞

#([a,b);N)

N
= b − a, ∀a,b ∈ R, 0 ≤ a < b ≤ 1

I {xi} is UDM1 if ∀ Riemann integrable function f on [0,1):

lim
N→∞

1
N

N∑
i=1

f (xi) =

∫ 1

0
f (x)dx

I Bohl, Sierpinksi, Weyl theorem: If α is irrational, then ∀ Riemann
integrable function f on [0,1) we have:

lim
N→∞

1
N

N∑
i=1

f ({iα}) =
∫ 1

0
f (x)dx

I Thus xi = {iα} = iα− biαc is UDM1 when α is irrational

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution
I Let {xi} be an infinite sequence of numbers in [0,1); E ⊂ [0,1), a

subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is uniformly distributed modulo 1 (UDM1) if:

lim
N→∞

#([a,b);N)

N
= b − a, ∀a,b ∈ R, 0 ≤ a < b ≤ 1

I {xi} is UDM1 if ∀ Riemann integrable function f on [0,1):

lim
N→∞

1
N

N∑
i=1

f (xi) =

∫ 1

0
f (x)dx

I Bohl, Sierpinksi, Weyl theorem: If α is irrational, then ∀ Riemann
integrable function f on [0,1) we have:

lim
N→∞

1
N

N∑
i=1

f ({iα}) =
∫ 1

0
f (x)dx

I Thus xi = {iα} = iα− biαc is UDM1 when α is irrational

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Equivalently the Weyl criterion can be applied empirically: {xi} is
UDM1 ⇐⇒ for every integer h 6= 0

lim
N→∞

1
N

N∑
i=1

e2πihxi = 0

Note: if {xi} are random then
∑N

i=1 e2πihxi ≈ O(
√

N)

I Discrepancy - the number of points in the sequence falling into
an arbitrary set B is close to proportional to the measure of B

I There exists an absolute constant C such that for any positive
integer m the discrepancy of any sequence {xi} satisfies

DN < C

(
1
m

m∑
h=0

1
h

∣∣∣∣∣ 1
N

N−1∑
i=0

e2πihxi

∣∣∣∣∣
)

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Equivalently the Weyl criterion can be applied empirically: {xi} is
UDM1 ⇐⇒ for every integer h 6= 0

lim
N→∞

1
N

N∑
i=1

e2πihxi = 0

Note: if {xi} are random then
∑N

i=1 e2πihxi ≈ O(
√

N)

I Discrepancy - the number of points in the sequence falling into
an arbitrary set B is close to proportional to the measure of B

I There exists an absolute constant C such that for any positive
integer m the discrepancy of any sequence {xi} satisfies

DN < C

(
1
m

m∑
h=0

1
h

∣∣∣∣∣ 1
N

N−1∑
i=0

e2πihxi

∣∣∣∣∣
)

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Equivalently the Weyl criterion can be applied empirically: {xi} is
UDM1 ⇐⇒ for every integer h 6= 0

lim
N→∞

1
N

N∑
i=1

e2πihxi = 0

Note: if {xi} are random then
∑N

i=1 e2πihxi ≈ O(
√

N)

I Discrepancy - the number of points in the sequence falling into
an arbitrary set B is close to proportional to the measure of B

I There exists an absolute constant C such that for any positive
integer m the discrepancy of any sequence {xi} satisfies

DN < C

(
1
m

m∑
h=0

1
h

∣∣∣∣∣ 1
N

N−1∑
i=0

e2πihxi

∣∣∣∣∣
)

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Let {xi} be an infinite sequence of vectors in [0,1)k ; E ⊂ [0,1)k ,
a subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is UDM1 in Rk if:

lim
N→∞

#([a,b);N)

N
=

k∏
i=1

(bi − ai), ∀[a,b) ∈ Rk

I if 1, α1, . . . αk are linearly independent over the rationals, then
xi = ({iα1}, . . . , {iαk}) is UDM1 in Rk

I {xi} ∈ R is k -distributed modulo 1 if
xi = (xi , xi+1, . . . xi+k−1) ∈ Rk is UDM1 in Rk

I {xi} ∈ R is∞-distributed modulo 1 if it is UDM1 in Rk , ∀k > 0
I If α is absolutely normal, then its digits can be used to

approximate an∞-distributed sequence modulo 1

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Let {xi} be an infinite sequence of vectors in [0,1)k ; E ⊂ [0,1)k ,
a subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is UDM1 in Rk if:

lim
N→∞

#([a,b);N)

N
=

k∏
i=1

(bi − ai), ∀[a,b) ∈ Rk

I if 1, α1, . . . αk are linearly independent over the rationals, then
xi = ({iα1}, . . . , {iαk}) is UDM1 in Rk

I {xi} ∈ R is k -distributed modulo 1 if
xi = (xi , xi+1, . . . xi+k−1) ∈ Rk is UDM1 in Rk

I {xi} ∈ R is∞-distributed modulo 1 if it is UDM1 in Rk , ∀k > 0
I If α is absolutely normal, then its digits can be used to

approximate an∞-distributed sequence modulo 1

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Let {xi} be an infinite sequence of vectors in [0,1)k ; E ⊂ [0,1)k ,
a subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is UDM1 in Rk if:

lim
N→∞

#([a,b);N)

N
=

k∏
i=1

(bi − ai), ∀[a,b) ∈ Rk

I if 1, α1, . . . αk are linearly independent over the rationals, then
xi = ({iα1}, . . . , {iαk}) is UDM1 in Rk

I {xi} ∈ R is k -distributed modulo 1 if
xi = (xi , xi+1, . . . xi+k−1) ∈ Rk is UDM1 in Rk

I {xi} ∈ R is∞-distributed modulo 1 if it is UDM1 in Rk , ∀k > 0
I If α is absolutely normal, then its digits can be used to

approximate an∞-distributed sequence modulo 1

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Let {xi} be an infinite sequence of vectors in [0,1)k ; E ⊂ [0,1)k ,
a subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is UDM1 in Rk if:

lim
N→∞

#([a,b);N)

N
=

k∏
i=1

(bi − ai), ∀[a,b) ∈ Rk

I if 1, α1, . . . αk are linearly independent over the rationals, then
xi = ({iα1}, . . . , {iαk}) is UDM1 in Rk

I {xi} ∈ R is k -distributed modulo 1 if
xi = (xi , xi+1, . . . xi+k−1) ∈ Rk is UDM1 in Rk

I {xi} ∈ R is∞-distributed modulo 1 if it is UDM1 in Rk , ∀k > 0
I If α is absolutely normal, then its digits can be used to

approximate an∞-distributed sequence modulo 1

Random Number Generation Using Normal Numbers

Introduction

Properties

Equidistribution

I Let {xi} be an infinite sequence of vectors in [0,1)k ; E ⊂ [0,1)k ,
a subset, and #(E ;N) the number of {xi}, 1 ≤ i ≤ N ∈ E , then
{xi} is UDM1 in Rk if:

lim
N→∞

#([a,b);N)

N
=

k∏
i=1

(bi − ai), ∀[a,b) ∈ Rk

I if 1, α1, . . . αk are linearly independent over the rationals, then
xi = ({iα1}, . . . , {iαk}) is UDM1 in Rk

I {xi} ∈ R is k -distributed modulo 1 if
xi = (xi , xi+1, . . . xi+k−1) ∈ Rk is UDM1 in Rk

I {xi} ∈ R is∞-distributed modulo 1 if it is UDM1 in Rk , ∀k > 0
I If α is absolutely normal, then its digits can be used to

approximate an∞-distributed sequence modulo 1

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal Numbers and Random Number Recursions

Normal Numbers and Recursive Sequences

I Associate a real number of the form
I β =

∑∞
i=1

rn
bn , where limn→∞ rn = 0

I having a PRNG sequence starting at x0 = 0
I xn = {bxn−1 + rn}
I xn is then equidistributed ⇐⇒ β is b-normal.

I Linear Congruential Generator (LCG) with prime additive
constant

I xn = a xn−1 + p (mod M)
I p is a prime additive constant
I a is the multiplier
I M for this generator is 264

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Normal from Sequence

I Consider a recurrence in the form:

xn = {2xn−1 + rn},where rn =

{
1
n , if n = 3k

0, otherwise

I Thus we have β = α2,3 in this case
I This leads to a recurrence formula

zn = 2zn−1 (mod 3j)

I Using a binary expansion of a normal sequence means we can
then just shift bits.

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Normal from Sequence

I Consider a recurrence in the form:

xn = {2xn−1 + rn},where rn =

{
1
n , if n = 3k

0, otherwise

I Thus we have β = α2,3 in this case
I This leads to a recurrence formula

zn = 2zn−1 (mod 3j)

I Using a binary expansion of a normal sequence means we can
then just shift bits.

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Normal from Sequence

I Consider a recurrence in the form:

xn = {2xn−1 + rn},where rn =

{
1
n , if n = 3k

0, otherwise

I Thus we have β = α2,3 in this case
I This leads to a recurrence formula

zn = 2zn−1 (mod 3j)

I Using a binary expansion of a normal sequence means we can
then just shift bits.

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Normal from Sequence

I Consider a recurrence in the form:

xn = {2xn−1 + rn},where rn =

{
1
n , if n = 3k

0, otherwise

I Thus we have β = α2,3 in this case
I This leads to a recurrence formula

zn = 2zn−1 (mod 3j)

I Using a binary expansion of a normal sequence means we can
then just shift bits.

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Getting a Generator from a Stoneham Number

I Recall that α2,3 =
∑

k≥0
1

23k 3k

I The digits starting at bit 23m
is x3m = {23m

α2,3} which can be
rewritten as

x3m = {
m∑

k=1

23m−3k

3k }+
∞∑

k=m+1

23m−3k

3k

I The second summation is extremely small even when m is not
large, call it εm, thus

x3m =
(3m−123m−3 + 3m−223m−32

+ . . .+ 3× 23m−3m−1
+ 1) (mod 3m)

3m

+εm

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Getting a Generator from a Stoneham Number

I Recall that α2,3 =
∑

k≥0
1

23k 3k

I The digits starting at bit 23m
is x3m = {23m

α2,3} which can be
rewritten as

x3m = {
m∑

k=1

23m−3k

3k }+
∞∑

k=m+1

23m−3k

3k

I The second summation is extremely small even when m is not
large, call it εm, thus

x3m =
(3m−123m−3 + 3m−223m−32

+ . . .+ 3× 23m−3m−1
+ 1) (mod 3m)

3m

+εm

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Getting a Generator from a Stoneham Number

I Recall that α2,3 =
∑

k≥0
1

23k 3k

I The digits starting at bit 23m
is x3m = {23m

α2,3} which can be
rewritten as

x3m = {
m∑

k=1

23m−3k

3k }+
∞∑

k=m+1

23m−3k

3k

I The second summation is extremely small even when m is not
large, call it εm, thus

x3m =
(3m−123m−3 + 3m−223m−32

+ . . .+ 3× 23m−3m−1
+ 1) (mod 3m)

3m

+εm

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Getting a Generator from a Stoneham Number

I 23m−3m−1 ≡ 1 (mod 3m), and similarly for the other terms (proof
on the next slide), and so

(3m−1 + 3m−2 + . . .+ 3 + 1) (mod 3m)

3m + εm

=
3m − 1
2× 3m + εm =

b3m/2c
3m + εm

I And finally we have

xn =
(2n−3mb3m/2c) (mod 3m)

3m + ε

I If we choose m = 33 then we derive the start of a sequence
where 52 bits can be generated at a time using double precision
arithmetic, 333 ≈ 252

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Getting a Generator from a Stoneham Number

I 23m−3m−1 ≡ 1 (mod 3m), and similarly for the other terms (proof
on the next slide), and so

(3m−1 + 3m−2 + . . .+ 3 + 1) (mod 3m)

3m + εm

=
3m − 1
2× 3m + εm =

b3m/2c
3m + εm

I And finally we have

xn =
(2n−3mb3m/2c) (mod 3m)

3m + ε

I If we choose m = 33 then we derive the start of a sequence
where 52 bits can be generated at a time using double precision
arithmetic, 333 ≈ 252

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Getting a Generator from a Stoneham Number

I 23m−3m−1 ≡ 1 (mod 3m), and similarly for the other terms (proof
on the next slide), and so

(3m−1 + 3m−2 + . . .+ 3 + 1) (mod 3m)

3m + εm

=
3m − 1
2× 3m + εm =

b3m/2c
3m + εm

I And finally we have

xn =
(2n−3mb3m/2c) (mod 3m)

3m + ε

I If we choose m = 33 then we derive the start of a sequence
where 52 bits can be generated at a time using double precision
arithmetic, 333 ≈ 252

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Proof of 3m−k ∗ 23m−3k
= 3m−k (mod 3m)

I Proof of the main result:

3m−k ∗ 23m−3k
= 3m−k (mod 3m) for 1 ≤ k ≤ m

1. By Euler’s generalization of little Fermat, 22∗3k−1
= 1 (mod 3k) for

any k ≥ 1, note that
φ(3k) = 3k ∗ (1− 1/3) = 3k−1 ∗ (3− 1) = 2 ∗ 3k−1

2. And so for some integer M depending only on k and m, 1 ≤ k ≤ m
we have

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 3k ∗M
3. It follows that

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 23k−1∗(3m−k+1−3) − 1 =

23m−3k
− 1 = 3k ∗M for 1 ≤ k ≤ m

4. Multiply both sides of this last equation by 3m−k to get

3m−k ∗ 23m−3k
= 3m−k (mod 3m)�

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Proof of 3m−k ∗ 23m−3k
= 3m−k (mod 3m)

I Proof of the main result:

3m−k ∗ 23m−3k
= 3m−k (mod 3m) for 1 ≤ k ≤ m

1. By Euler’s generalization of little Fermat, 22∗3k−1
= 1 (mod 3k) for

any k ≥ 1, note that
φ(3k) = 3k ∗ (1− 1/3) = 3k−1 ∗ (3− 1) = 2 ∗ 3k−1

2. And so for some integer M depending only on k and m, 1 ≤ k ≤ m
we have

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 3k ∗M
3. It follows that

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 23k−1∗(3m−k+1−3) − 1 =

23m−3k
− 1 = 3k ∗M for 1 ≤ k ≤ m

4. Multiply both sides of this last equation by 3m−k to get

3m−k ∗ 23m−3k
= 3m−k (mod 3m)�

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Proof of 3m−k ∗ 23m−3k
= 3m−k (mod 3m)

I Proof of the main result:

3m−k ∗ 23m−3k
= 3m−k (mod 3m) for 1 ≤ k ≤ m

1. By Euler’s generalization of little Fermat, 22∗3k−1
= 1 (mod 3k) for

any k ≥ 1, note that
φ(3k) = 3k ∗ (1− 1/3) = 3k−1 ∗ (3− 1) = 2 ∗ 3k−1

2. And so for some integer M depending only on k and m, 1 ≤ k ≤ m
we have

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 3k ∗M
3. It follows that

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 23k−1∗(3m−k+1−3) − 1 =

23m−3k
− 1 = 3k ∗M for 1 ≤ k ≤ m

4. Multiply both sides of this last equation by 3m−k to get

3m−k ∗ 23m−3k
= 3m−k (mod 3m)�

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Proof of 3m−k ∗ 23m−3k
= 3m−k (mod 3m)

I Proof of the main result:

3m−k ∗ 23m−3k
= 3m−k (mod 3m) for 1 ≤ k ≤ m

1. By Euler’s generalization of little Fermat, 22∗3k−1
= 1 (mod 3k) for

any k ≥ 1, note that
φ(3k) = 3k ∗ (1− 1/3) = 3k−1 ∗ (3− 1) = 2 ∗ 3k−1

2. And so for some integer M depending only on k and m, 1 ≤ k ≤ m
we have

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 3k ∗M
3. It follows that

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 23k−1∗(3m−k+1−3) − 1 =

23m−3k
− 1 = 3k ∗M for 1 ≤ k ≤ m

4. Multiply both sides of this last equation by 3m−k to get

3m−k ∗ 23m−3k
= 3m−k (mod 3m)�

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Proof of 3m−k ∗ 23m−3k
= 3m−k (mod 3m)

I Proof of the main result:

3m−k ∗ 23m−3k
= 3m−k (mod 3m) for 1 ≤ k ≤ m

1. By Euler’s generalization of little Fermat, 22∗3k−1
= 1 (mod 3k) for

any k ≥ 1, note that
φ(3k) = 3k ∗ (1− 1/3) = 3k−1 ∗ (3− 1) = 2 ∗ 3k−1

2. And so for some integer M depending only on k and m, 1 ≤ k ≤ m
we have

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 3k ∗M
3. It follows that

22∗3k−1∗3∗(3m−k−1)/2 − 1 = 23k−1∗(3m−k+1−3) − 1 =

23m−3k
− 1 = 3k ∗M for 1 ≤ k ≤ m

4. Multiply both sides of this last equation by 3m−k to get

3m−k ∗ 23m−3k
= 3m−k (mod 3m)�

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Mathematical Model: Specific Constants

I Specific generator form of a Normal Constant

α2,3 =
∑
k>1

1
3k 23k

I This sum produces numbers of the form
= 0.0418836808315029850712528986245716824260967584654857 ... 10
= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B ... 16

Random Number Generation Using Normal Numbers

Relationship with standard pseudorandom number generators

Normal from recursive sequence

Mathematical Model: Specific Constants

I Specific generator form of a Normal Constant

α2,3 =
∑
k>1

1
3k 23k

I This sum produces numbers of the form
= 0.0418836808315029850712528986245716824260967584654857 ... 10
= 0.0AB8E38F684BDA12F684BF35BA781948B0FCD6E9E06522C3F35B ... 16

Random Number Generation Using Normal Numbers

Source Code

Source Code

Source Code
I Seed Generation
I Calculation Code Initial
I Calculation Code Iteration

Random Number Generation Using Normal Numbers

Source Code

Source Code

Source Code
I Seed Generation
I Calculation Code Initial
I Calculation Code Iteration

Random Number Generation Using Normal Numbers

Source Code

Source Code

Source Code
I Seed Generation
I Calculation Code Initial
I Calculation Code Iteration

Random Number Generation Using Normal Numbers

Source Code

Seed Generation

Seed Generation

Initialization
I Select a starting index a in the range

333+100 = 5559060566555623 ≤ a ≤ 253 = 9007199254740992

I ’a’ can be thought of as the ’seed’ of the generator
I Calculate the first value

z0 = (2a−333
· b333/2c) (mod 333)

I To return in the unit interval, multiply by 3−33

Generate Iterates
I The next values can be calculated by the recursion

zk = (253 · zk−1) (mod 333)

Random Number Generation Using Normal Numbers

Source Code

Seed Generation

Seed Generation

Initialization
I Select a starting index a in the range

333+100 = 5559060566555623 ≤ a ≤ 253 = 9007199254740992

I ’a’ can be thought of as the ’seed’ of the generator
I Calculate the first value

z0 = (2a−333
· b333/2c) (mod 333)

I To return in the unit interval, multiply by 3−33

Generate Iterates
I The next values can be calculated by the recursion

zk = (253 · zk−1) (mod 333)

Random Number Generation Using Normal Numbers

Source Code

Seed Generation

Seed Generation

Initialization
I Select a starting index a in the range

333+100 = 5559060566555623 ≤ a ≤ 253 = 9007199254740992

I ’a’ can be thought of as the ’seed’ of the generator
I Calculate the first value

z0 = (2a−333
· b333/2c) (mod 333)

I To return in the unit interval, multiply by 3−33

Generate Iterates
I The next values can be calculated by the recursion

zk = (253 · zk−1) (mod 333)

Random Number Generation Using Normal Numbers

Source Code

Seed Generation

Seed Generation

Initialization
I Select a starting index a in the range

333+100 = 5559060566555623 ≤ a ≤ 253 = 9007199254740992

I ’a’ can be thought of as the ’seed’ of the generator
I Calculate the first value

z0 = (2a−333
· b333/2c) (mod 333)

I To return in the unit interval, multiply by 3−33

Generate Iterates
I The next values can be calculated by the recursion

zk = (253 · zk−1) (mod 333)

Random Number Generation Using Normal Numbers

Source Code

Seed Generation

Seed Generation

Initialization
I Select a starting index a in the range

333+100 = 5559060566555623 ≤ a ≤ 253 = 9007199254740992

I ’a’ can be thought of as the ’seed’ of the generator
I Calculate the first value

z0 = (2a−333
· b333/2c) (mod 333)

I To return in the unit interval, multiply by 3−33

Generate Iterates
I The next values can be calculated by the recursion

zk = (253 · zk−1) (mod 333)

Random Number Generation Using Normal Numbers

Source Code

Calculation Code Initial

Calculation Code Initial

// define some constants
p3i = pow(3.0, 33.0);
r3i = 1.0 / p3i;
t53 = pow(2.0, 53.0);

// Calculate starting element.
d2 = expm2 (aa - p3i, p3i);
d3 = aint (0.50 * p3i);
ddmuldd (d2, d3, dd1);
d1 = aint (r3i * dd1[0]);
ddmuldd (d1, p3i, dd2);
ddsub (dd1, dd2, dd3);
d1 = dd3[0];
if(d1 < 0.0)

d1 = d1 + p3i;

Random Number Generation Using Normal Numbers

Source Code

Calculation Code Iteration

Calculation Code Iteration

dd1[0] = t53 * d1;
dd1[1] = 0.0;
d2 = aint (t53 * d1 / p3i);
ddmuldd (p3i, d2, dd2);
ddsub (dd1, dd2, dd3);
d1 = dd3[0];
if (d1 < 0.0)

d1 = d1 + p3i;

Random Number Generation Using Normal Numbers

Implementation and Results

Implementation and Results

I First implement in TestU01
I TestU01 results
I Implementation in SPRNG

I SPRNG results

Random Number Generation Using Normal Numbers

Implementation and Results

Implementation and Results

I First implement in TestU01
I TestU01 results
I Implementation in SPRNG

I SPRNG results

Random Number Generation Using Normal Numbers

Implementation and Results

Implementation and Results

I First implement in TestU01
I TestU01 results
I Implementation in SPRNG

I SPRNG results

Random Number Generation Using Normal Numbers

Implementation and Results

Implementation and Results

I First implement in TestU01
I TestU01 results
I Implementation in SPRNG

I SPRNG results

Random Number Generation Using Normal Numbers

Implementation and Results

TestU01 Results
SmallCrush
==
Version: TestU01 1.2.1
seed = 5559060566555623

========= Summary results of SmallCrush =========

Version: TestU01 1.2.1
Generator: ubcn_CreateBCNf
Number of statistics: 15
Total CPU time: 00:01:01.67
The following tests gave p-values outside [0.001, 0.9990]:
(eps means a value < 1.0e-300):
(eps1 means a value < 1.0e-15):

Test p-value
==
1 BirthdaySpacings eps
==
All other tests were passed

Table: TestU01 Results - SmallCrush

Random Number Generation Using Normal Numbers

Implementation and Results

Implementation in SPRNG

I Class Definition
I Initialization Routine
I Iterations

Random Number Generation Using Normal Numbers

Implementation and Results

Implementation in SPRNG

I Class Definition
I Initialization Routine
I Iterations

Random Number Generation Using Normal Numbers

Implementation and Results

Implementation in SPRNG

I Class Definition
I Initialization Routine
I Iterations

Random Number Generation Using Normal Numbers

Implementation and Results

Class Definition

I class BCN : public Sprng
I #define NPARAMS 1 /*** number of valid parameters ***/
Sprng * SelectType(int typenum)
{

switch (typenum)
case 0: return new LFG;
case 1: return new LCG;
case 2: return new LCG64;
case 3: return new CMRG;
case 4: return new MLFG;
case 5: return new PMLCG;
case 6: return new BCN;

Random Number Generation Using Normal Numbers

Implementation and Results

Initialization Routine

I Calculate constants

BCN::BCN() /* default constructor */
{
p3i = long long(pow(3.0, 33.0)); // 3^{33}
r3i = 1.0 / p3i; // $\frac{1}{3^{33}}$
t53 = long long(pow(2.0, 53.0)); // 2^{53}

I Calculate Initial Value

int BCN::init_rng(int gn, int tg, int seed, int p)

Random Number Generation Using Normal Numbers

Implementation and Results

Iterations

I Single function to get next random number
I Different versions to return different types
int get_rn_int (); /* returns integer */
long long get_rn_int64 (); /* returns integer */
float get_rn_flt (); /* returns float */
double get_rn_dbl (); /* returns double */

Random Number Generation Using Normal Numbers

Implementation and Results

SPRNG Timing Results

Type Integer Float Double
lcg 125.0156 MRS 125.0156 MRS 142.8776 MRS
lfg 66.6756 MRS 62.5117 MRS 52.6399 MRS
mlfg 166.6944 MRS 100.0100 MRS 142.8776 MRS
lcg64 142.8776 MRS 62.5078 MRS 71.4388 MRS
cmrg 111.1235 MRS 47.6259 MRS 58.8339 MRS
bcn 23.2591 MRS 22.2257 MRS 22.7309 MRS

Table: Timing C++ interface: (Note: MRS = Million Random Numbers Per
Second)

Random Number Generation Using Normal Numbers

Implementation and Results

How well does it work in Practice?

I Monte Carlo autocorrelation
I Typical good generator autocorrelation time
I Normal Number generator autocorrelation time
I Bad LCG generator autocorrelation time

Random Number Generation Using Normal Numbers

Implementation and Results

How well does it work in Practice?

I Monte Carlo autocorrelation
I Typical good generator autocorrelation time
I Normal Number generator autocorrelation time
I Bad LCG generator autocorrelation time

Random Number Generation Using Normal Numbers

Implementation and Results

How well does it work in Practice?

I Monte Carlo autocorrelation
I Typical good generator autocorrelation time
I Normal Number generator autocorrelation time
I Bad LCG generator autocorrelation time

Random Number Generation Using Normal Numbers

Implementation and Results

How well does it work in Practice?

I Monte Carlo autocorrelation
I Typical good generator autocorrelation time
I Normal Number generator autocorrelation time
I Bad LCG generator autocorrelation time

Random Number Generation Using Normal Numbers

Implementation and Results

Typical good generator autocorrelation time

Figure: Potts-Ising Model with good generator

Random Number Generation Using Normal Numbers

Implementation and Results

Normal Number generator autocorrelation time

Figure: Potts Ising Model with Normal Number generator

Random Number Generation Using Normal Numbers

Implementation and Results

Typical bad generator autocorrelation time

Figure: Potts Ising Model with bad generator

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Conclusions and Future Work

I The Random Number Generator seems to work very well by
passing all the tests, except one.

I The Normal Number generator runs a bit slower than the other
generators.

I Future Options
I The b and c constants chosen can be changed as long as they

are co-prime.
I The speed needs to be improved.
I Implement on GPU

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Conclusions and Future Work

I The Random Number Generator seems to work very well by
passing all the tests, except one.

I The Normal Number generator runs a bit slower than the other
generators.

I Future Options
I The b and c constants chosen can be changed as long as they

are co-prime.
I The speed needs to be improved.
I Implement on GPU

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Conclusions and Future Work

I The Random Number Generator seems to work very well by
passing all the tests, except one.

I The Normal Number generator runs a bit slower than the other
generators.

I Future Options
I The b and c constants chosen can be changed as long as they

are co-prime.
I The speed needs to be improved.
I Implement on GPU

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Conclusions and Future Work

I The Random Number Generator seems to work very well by
passing all the tests, except one.

I The Normal Number generator runs a bit slower than the other
generators.

I Future Options
I The b and c constants chosen can be changed as long as they

are co-prime.
I The speed needs to be improved.
I Implement on GPU

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Conclusions and Future Work

I The Random Number Generator seems to work very well by
passing all the tests, except one.

I The Normal Number generator runs a bit slower than the other
generators.

I Future Options
I The b and c constants chosen can be changed as long as they

are co-prime.
I The speed needs to be improved.
I Implement on GPU

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Conclusions and Future Work

I The Random Number Generator seems to work very well by
passing all the tests, except one.

I The Normal Number generator runs a bit slower than the other
generators.

I Future Options
I The b and c constants chosen can be changed as long as they

are co-prime.
I The speed needs to be improved.
I Implement on GPU

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Questions?

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Bibliography
[D. H. Bailey (2004)]
A Pseudo-Random Number Generator Based on Normal
Numbers,
http://crd.lbl.gov/∼dhbailey/dhbpapers/normal-random.pdf, 8
pages.

[D. H. Bailey and R. E. Crandall (2004)]
Random Generators and Normal Numbers,
Experimental Mathematics, 11(4): 527–546.

[D. H. Bailey and D. J. Rudolph (2002)]
An Ergodic Proof that Rational Times Normal is Normal,
http://www.nersc.gov/∼dhbailey/dhbpapers/ratxnormal.pdf, 2
pages.

[S. F. Brailsford and M. Mascagni and D. H. Bailey (2014)]
Normal Numbers as Efficient Sources of Pseudorandom Digits,
in preparation from SFB’s MS Thesis, SPRNG Gets a Normal
Number Generator

http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf
http://www.cs.fsu.edu/~mascagni/RNG_Papers/Bailey_Crandall_2002.pdf
http://www.nersc.gov/~dhbailey/dhbpapers/ratxnormal.pdf

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Bibliography
[D. H. Bailey (2004)]
A Pseudo-Random Number Generator Based on Normal
Numbers,
http://crd.lbl.gov/∼dhbailey/dhbpapers/normal-random.pdf, 8
pages.

[D. H. Bailey and R. E. Crandall (2004)]
Random Generators and Normal Numbers,
Experimental Mathematics, 11(4): 527–546.

[D. H. Bailey and D. J. Rudolph (2002)]
An Ergodic Proof that Rational Times Normal is Normal,
http://www.nersc.gov/∼dhbailey/dhbpapers/ratxnormal.pdf, 2
pages.

[S. F. Brailsford and M. Mascagni and D. H. Bailey (2014)]
Normal Numbers as Efficient Sources of Pseudorandom Digits,
in preparation from SFB’s MS Thesis, SPRNG Gets a Normal
Number Generator

http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf
http://www.cs.fsu.edu/~mascagni/RNG_Papers/Bailey_Crandall_2002.pdf
http://www.nersc.gov/~dhbailey/dhbpapers/ratxnormal.pdf

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Bibliography
[D. H. Bailey (2004)]
A Pseudo-Random Number Generator Based on Normal
Numbers,
http://crd.lbl.gov/∼dhbailey/dhbpapers/normal-random.pdf, 8
pages.

[D. H. Bailey and R. E. Crandall (2004)]
Random Generators and Normal Numbers,
Experimental Mathematics, 11(4): 527–546.

[D. H. Bailey and D. J. Rudolph (2002)]
An Ergodic Proof that Rational Times Normal is Normal,
http://www.nersc.gov/∼dhbailey/dhbpapers/ratxnormal.pdf, 2
pages.

[S. F. Brailsford and M. Mascagni and D. H. Bailey (2014)]
Normal Numbers as Efficient Sources of Pseudorandom Digits,
in preparation from SFB’s MS Thesis, SPRNG Gets a Normal
Number Generator

http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf
http://www.cs.fsu.edu/~mascagni/RNG_Papers/Bailey_Crandall_2002.pdf
http://www.nersc.gov/~dhbailey/dhbpapers/ratxnormal.pdf

Random Number Generation Using Normal Numbers

Conclusions and Future Work

Bibliography
[D. H. Bailey (2004)]
A Pseudo-Random Number Generator Based on Normal
Numbers,
http://crd.lbl.gov/∼dhbailey/dhbpapers/normal-random.pdf, 8
pages.

[D. H. Bailey and R. E. Crandall (2004)]
Random Generators and Normal Numbers,
Experimental Mathematics, 11(4): 527–546.

[D. H. Bailey and D. J. Rudolph (2002)]
An Ergodic Proof that Rational Times Normal is Normal,
http://www.nersc.gov/∼dhbailey/dhbpapers/ratxnormal.pdf, 2
pages.

[S. F. Brailsford and M. Mascagni and D. H. Bailey (2014)]
Normal Numbers as Efficient Sources of Pseudorandom Digits,
in preparation from SFB’s MS Thesis, SPRNG Gets a Normal
Number Generator

http://crd.lbl.gov/~dhbailey/dhbpapers/normal-random.pdf
http://www.cs.fsu.edu/~mascagni/RNG_Papers/Bailey_Crandall_2002.pdf
http://www.nersc.gov/~dhbailey/dhbpapers/ratxnormal.pdf

Random Number Generation Using Normal Numbers

Conclusions and Future Work

c© Steve Brailsford and Michael Mascagni, 2014

	Introduction
	Normal Numbers
	Examples of Normal Numbers
	Properties

	Relationship with standard pseudorandom number generators
	Normal Numbers and Random Number Recursions
	Normal from recursive sequence

	Source Code
	Seed Generation
	Calculation Code Initial
	Calculation Code Iteration

	Implementation and Results
	Conclusions and Future Work

